SET	_	2

काड	٦.	
Cod	e	No.

56/1/2/D

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 11 हैं ।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में **26** प्रश्न हैं ।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाहन में 10.15 बजे किया जायेगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 11 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **26** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक)

CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70 Time allowed : 3 hours Maximum Marks : 70

सामान्य निर्देश :

- (i) **सभी** प्रश्न अनिवार्य हैं।
- (ii) प्रश्न-संख्या 1 से 5 तक अति लघ्-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है ।
- (iii) प्रश्न-संख्या 6 से 10 तक लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (iv) प्रश्न-संख्या 11 से 22 तक भी लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं ।
- (v) प्रश्न-संख्या 23 मूल्याधारित प्रश्न है और इसके लिए 4 अंक हैं ।
- (vi) प्रश्न-संख्या 24 से 26 तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 5 अंक हैं ।
- (vii) यदि आवश्यकता हो, तो लॉग टेबलों का प्रयोग करें । कैलकुलेटरों के उपयोग की अनुमित **नहीं** है ।

56/1/2/D 1 [P.T.O.

General Instructions:

- (i) All questions are compulsory.
- (ii) Questions number 1 to 5 are very short-answer questions and carry 1 mark each.
- (iii) Questions number 6 to 10 are short-answer questions and carry 2 marks each.
- (iv) Questions number 11 to 22 are also short-answer questions and carry 3 marks each.
- (v) Questions number 23 is a value based question and carry 4 marks.
- (vi) Questions number 24 to 26 are long-answer questions and carry 5 marks each.
- (vii) Use log tables, if necessary. Use of calculators is **not** allowed.
- 1. दिये गये यौगिक का आई यू पी ए सी नाम लिखिए :

Write the IUPAC name of the given compound:

2. कोलॉइडी सॉल की स्थिरता के लिये मुख्य कारण लिखिए ।

Write the main reason for the stability of colloidal sols.

3. $CH_3 - CH - CH_2 - Cl$ और $CH_3 - CH_2 - CH_3 - Cl$ में से कौन $S_N 1$ अभिक्रिया के प्रति अधिक CH_3 CH_3

सिक्रय है और क्यों ?

Out of
$$CH_3$$
 – CH – CH_2 – Cl and CH_3 – CH_2 – CH – Cl , which is more reactive CH_3

towards $S_N 1$ reaction and why?

4. अमोनियम सल्फेट में NaOH के डालने पर एक रंगहीन गैस तीखी गंध के साथ निकलती है जो Cu²⁺ आयन के साथ नीले रंग का कॉम्प्लेक्स बनाती है । इस गैस की पहचान कीजिए ।

On adding NaOH to ammonium sulphate, a colourless gas with pungent odour is evolved which forms a blue coloured complex with Cu²⁺ ion. Identify the gas.

5. यदि चुम्बकीय विभव समान दिशाओं में व्यवस्थित हो, तो यह किस प्रकार का चुम्बकत्व दर्शाता है ?

What type of magnetism is shown by a substance if magnetic moments of domains are arranged in same direction ?

- 6. एक अभिक्रिया : $2NH_3(g) \xrightarrow{Pt} N_2(g) + 3H_2(g)$ के लिये दर = k
 - (i) अभिक्रिया की कोटि और अणुता
 - (ii) k का यूनिट लिखिए ।

For a reaction:
$$2NH_3(g) \xrightarrow{Pt} N_2(g) + 3H_2(g)$$

Rate = k

- (i) Write the order and molecularity of this reaction.
- (ii) Write the unit of k.
- 7. निम्न अभिक्रिया की क्रियाविधि लिखिए:

2 CH₃CH₂OH
$$\xrightarrow{\text{सान्द्र H}_2\text{SO}_4}$$
 CH₃CH₂-O-CH₂-CH₃

Write the mechanism of the following reaction:

$$2CH_3CH_2OH \xrightarrow{Conc. H_2SO_4} CH_3CH_2-O-CH_2-CH_3$$

8. निम्न सेलों के लिये

लेड स्टोरेज सेल, मर्करी सेल, ईंधन सेल और शुष्क सेल निम्न उत्तर दीजिए :

- (i) सनने की सहायता के लिये किस सेल का उपयोग होता है ?
- (ii) अपोलो स्पेस प्रोग्राम में कौन सी सेल का उपयोग किया गया था ?
- (iii) ऑटोमोबाइल और इनवर्टर में किस सेल का उपयोग होता है ?
- (iv) किस सेल की लाइफ लम्बी नहीं होती है ?

From the given cells:

Lead storage cell, Mercury cell, Fuel cell and Dry cell Answer the following:

- (i) Which cell is used in hearing aids?
- (ii) Which cell was used in Apollo Space Programme?
- (iii) Which cell is used in automobiles and inverters?
- (iv) Which cell does not have long life?

56/1/2/D 3 [P.T.O.

- 9. जब वायु में क्रोमाइट अयस्क $FeCr_2O_4$ को NaOH के साथ गलाया जाता है, तो एक पीले रंग का यौगिक (A) प्राप्त होता है जिसका तनु सल्फ्यूरिक अम्ल के साथ अम्लीकरण करने पर यौगिक (B) प्राप्त होता है । यौगिक (B) की KCl के साथ अभिक्रिया होने पर एक नारंगी रंग का क्रिस्टली यौगिक (C) प्राप्त होता है ।
 - (i) यौगिक (A), (B) और (C) के सूत्र लिखिए ।
 - (ii) यौगिक (C) का एक उपयोग लिखिए ।

अथवा

निम्न रासायनिक समीकरणों को पूरा कीजिए:

(i)
$$8\text{MnO}_4^- + 3\text{S}_2\text{O}_3^{2-} + \text{H}_2\text{O} \rightarrow$$

(ii)
$$Cr_2O_7^{2-} + 3Sn^{2+} + 14H^+ \rightarrow$$

When chromite ore $FeCr_2O_4$ is fused with NaOH in presence of air, a yellow coloured compound (A) is obtained which on acidification with dilute sulphuric acid gives a compound (B). Compound (B) on reaction with KCl forms a orange coloured crystalline compound (C).

- (i) Write the formulae of the compounds (A), (B) and (C).
- (ii) Write one use of compound (C).

OR

Complete the following chemical equations:

(i)
$$8\text{MnO}_4^- + 3\text{S}_2\text{O}_3^{2-} + \text{H}_2\text{O} \rightarrow$$

(ii)
$$Cr_2O_7^{2-} + 3Sn^{2+} + 14H^+ \rightarrow$$

- 10. जब एक उपसहसंयोजन यौगिक $CrCl_3.6H_2O$ को $AgNO_3$ के साथ मिलाया जाता है, तब यौगिक के एक मोल पर AgCl के दो मोल अवक्षेपित होते हैं । लिखिए
 - (i) कॉम्प्लेक्स का संरचना सूत्र
 - (ii) कॉम्प्लेक्स का आई यू पी ए सी नाम

When a co-ordination compound $CrCl_3.6H_2O$ is mixed with $AgNO_3$, 2 moles of AgCl are precipitated per mole of the compound. Write

- (i) Structural formula of the complex.
- (ii) IUPAC name of the complex.
- 11. (i) अधिशोषण और शोषण में अंतर कीजिए ।
 - (ii) ${
 m MgC}l_2$ और ${
 m AlC}l_3$ में कौन ऋणात्मक चार्ज के सॉल का संगुणन अधिक प्रभावशाली ढंग से करेगा और क्यों ?
 - (iii) सल्फर सॉल और प्रोटीनों में से कौन बहुआणविक कोलॉइड बनाता है ?
 - (i) Differentiate between adsorbtion and absorption.
 - (ii) Out of MgCl₂ and AlCl₃, which one is more effective in causing coagulation of negatively charged sol and why?
 - (iii) Out of sulphur sol and proteins, which one forms multimolecular colloids?

- 12. (i) जर्मेनियम जैसी धातु के परिष्करण की विधि का नाम दीजिए ।
 - (ii) Al के निष्कर्षण में अशुद्ध Al_2O_3 को सान्द्र NaOH में घुलाया जाता है जिससे सोडियम ऐलुमीनेट बनता है और अशुद्धियाँ पीछे रह जाती हैं । इस विधि का क्या नाम है ?
 - (iii) ऑक्साइड अयस्क से आयरन के निष्कर्षण में कोक की क्या भूमिका होती है ?
 - (i) Name the method of refining of metals such as Germanium.
 - (ii) In the extraction of Al, impure Al_2O_3 is dissolved in conc. NaOH to form sodium aluminate and leaving impurities behind. What is the name of this process?
 - (iii) What is the role of coke in the extraction of iron from its oxides?
- 13. 298 K पर निम्न सेल का e.m.f परिकलित कीजिए:

$$2Cr(s) + 3Fe^{2+}(0.1M) \rightarrow 2Cr^{3+}(0.01M) + 3Fe(s)$$

दिया गया :
$$E^{\circ}(Cr^{3+} \mid Cr) = -0.74V E^{\circ}(Fe^{2+} \mid Fe) = -0.44 V$$

Calculate e.m.f of the following cell at 298 K:

$$2Cr(s) + 3Fe^{2+}(0.1M) \rightarrow 2Cr^{3+}(0.01M) + 3Fe(s)$$

Given:
$$E^{\circ}(Cr^{3+} \mid Cr) = -0.74 \text{ V } E^{\circ}(Fe^{2+} \mid Fe) = -0.44 \text{ V}$$

14. कारण दीजिए:

- (i) क्लोरोबेन्जीन में के C–Cl आबन्ध की लम्बाई CH_3 –Cl में के C–Cl आबन्ध की लम्बाई से कम है ।
- (ii) क्लोरोबेन्जीन का द्विध्रुवी विभव साइक्लोहेक्सिल क्लोराइड के द्विध्रुवी विभव से निम्नतर है ।
- (iii) प्रकाशकीय सिक्रय ऐल्किल हैलाइडों में $\mathbf{S_N} \mathbf{1}$ अभिक्रियाएँ रेसिमीकरण के साथ होती हैं ।

Give reasons:

- (i) C–Cl bond length in chlorobenzene is shorter than C–Cl bond length in CH $_3$ –Cl.
- (ii) The dipole moment of chlorobenzene is lower than that of cyclohexyl chloride.
- (iii) S_N^1 reactions are accompanied by racemization in optically active alkyl halides.
- 15. कोई तत्त्व 250 pm कोष्टिका कोर के साथ किसी f.c.c. जालक में क्रिस्टलीकृत होता है । यदि इस तत्त्व के $300~{\rm g}$ में 2×10^{24} परमाणु हैं, तो घनत्व परिकलित कीजिए ।

An element crystallizes in a f.c.c. lattice with cell edge of 250 pm. Calculate the density if 300 g of this element contain 2×10^{24} atoms.

56/1/2/D 5 [P.T.O.

16. H_2O_2 के प्रथम कोटि वियोजन के लिये दर स्थिरांक निम्न समीकरण द्वारा दिया जाता है :

$$\log k = 14.2 - \frac{1.0 \times 10^4}{T} \, K$$

यदि इसकी अर्ध-आयु 200 मिनट हो, तो इस अभिक्रिया के लिए E_a और दर स्थिरांक k का परिकलन कीजिए । (दिया गया : $R=8.314~J~K^{-1}~mol^{-1}$)

The rate constant for the first order decomposition of H_2O_2 is given by the following equation:

$$\log k = 14.2 - \frac{1.0 \times 10^4}{T} \, K$$

Calculate E_a for this reaction and rate constant k if its half-life period be 200 minutes. (Given : $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$)

- 17. (i) एथीन के बहुलकीकरण में t-ब्यूटिल परॉक्साइड की क्या भूमिका होती है ?
 - (ii) निम्न बहुलक में एकलक की पहचान कीजिए :

$$-\{NH - (CH_2)_6 - NH - CO - (CH_2)_4 - CO-\}_n$$

(iii) निम्न बहुलकों को उनके अंतराण्विक बल के बढ़ते क्रम में व्यवस्थित कीजिए : पॉलिस्टीरीन, टेरिलीन, ब्यूना-S

एथीन के फ्री रेडिकल बहुलकीकरण की क्रियाविधि लिखिए ।

- (i) What is the role of t-butyl peroxide in the polymerization of ethene?
- (ii) Identify the monomers in the following polymer:

$$-\text{INH} - (\text{CH}_2)_6 - \text{NH} - \text{CO} - (\text{CH}_2)_4 - \text{CO} - \frac{1}{2}$$

(iii) Arrange the following polymers in the increasing order of their intermolecular forces:

Polystyrene, Terylene, Buna-S

OR

Write the mechanism of free radical polymerization of ethene.

- 18. (i) दो मोनोसैकैराइडों के नाम लिखिए जो लेक्टोस शुगर के जल-अपघटन से प्राप्त होते हैं ।
 - (ii) विटामिन C हमारे शरीर में क्यों संचित नहीं किया जा सकता है ?
 - (iii) एक न्यूक्लिओसाइड और न्यूक्लिओटाइड में क्या अंतर है ?
 - (i) Write the name of two monosaccharides obtained on hydrolysis of lactose sugar.
 - (ii) Why Vitamin C cannot be stored in our body?
 - (iii) What is the difference between a nucleoside and nucleotide?

- 19. (a) कॉम्प्लेक्स $[Fe(CN)_6]^{3-}$ के लिये संकरण प्रकार, चुम्बकीय व्यवहार और स्पिन स्वभाव लिखिए । $(\Psi, \dot{\pi}. : Fe = 26)$
 - (b) कॉम्प्लेक्स $[Pt(en)_2Cl_2]^{2+}$ के उस एकलक को लिखिए जो प्रकाशकीय सिक्रय है ।
 - (a) For the complex $[Fe(CN)_6]^{3-}$, write the hybridization type, magnetic character and spin nature of the complex. (At. number : Fe = 26).
 - (b) Draw one of the geometrical isomers of the complex $[Pt(en)_2Cl_2]^{2+}$ which is optically active.

20. कारण दीजिए:

- (i) Mn ऑक्सीजन के साथ उपचयन अवस्था +7 दर्शाता है, परन्तु फ्लुओरीन के साथ यह +4 ही रहता है ।
- (ii) संक्रमण धातुएँ विविध उपचयन अवस्थाएँ दर्शाती हैं ।
- (iii) ऐक्टिनोयड अपने इलेक्ट्रॉनिक विन्यास में अनियमितता दर्शाते हैं ।

Give reasons:

- (i) Mn shows the highest oxidation state of +7 with oxygen but with fluorine it shows the highest oxidation state of +4.
- (ii) Transition metals show variable oxidation states.
- (iii) Actinoids show irregularities in their electronic configurations.
- 21. निम्न अभिक्रियाओं में प्रत्येक के मुख्य उत्पाद लिखिए :

(i)
$$CH_3$$
 $CH_3 - C - O - CH_3 + HI \longrightarrow CH_3$

(ii)
$$CH_3 - CH = CH_2 \xrightarrow{(i)} \frac{B_2H_6}{(ii)} \frac{3H_2O_2/OH}{(iii)}$$

(iii)
$$C_6H_5 - OH$$
 (i) aq.NaOH (ii) CO_2 , H^+

Write the main product(s) in each of the following reactions:

$$\begin{array}{c} \operatorname{CH_3} \\ | \\ \operatorname{CH_3} - \operatorname{C-} \operatorname{O} - \operatorname{CH_3} + \operatorname{HI} \longrightarrow \\ | \\ \operatorname{CH_3} \end{array}$$

(ii)
$$CH_3 - CH = CH_2 \xrightarrow{(i)} \frac{B_2H_6}{(ii)} \xrightarrow{3H_2O_2/OH}$$

(iii)
$$C_6H_5 - OH$$
 (i) aq. NaOH (ii) CO_2 , H^+

56/1/2/D 7 [P.T.O.

22. निम्न में A, B और C की संरचनाएँ लिखए:

(i)
$$C_6H_5 - CONH_2 \xrightarrow{Br_2/aq.KOH} A \xrightarrow{NaNO_2 + HCl} B \xrightarrow{KI} C$$

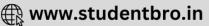
(ii)
$$CH_3 - Cl \xrightarrow{KCN} A \xrightarrow{LiA/H_4} B \xrightarrow{CHCl_3 + alc.KOH} C$$

Write the structures of A, B and C in the following:

(i)
$$C_6H_5 - CONH_2 \xrightarrow{Br_2/aq. KOH} A \xrightarrow{NaNO_2 + HCl} B \xrightarrow{KI} C$$

(ii)
$$CH_3 - Cl \xrightarrow{KCN} A \xrightarrow{LiA/H_4} B \xrightarrow{CHCl_3 + alc. KOH} C$$

23. अत्यंत व्यस्तता के कारण मि. अंगद ने अपना जीवन तनावपूर्ण बना दिया था । उन्होंने तनाव पर कंट्रोल करने के लिये नींद की गोलियाँ लेना शुरू कर दिया और इसके लिये डॉक्टर की सलाह नहीं ली । मि. अंगद के एक मित्र मि. दीपक उन्हें नींद की गोली न लेने की सलाह दी और सुझाव दिया कि वे अपनी जीवन-चर्या में सुधार ले आवें और साथ ही उन्हें योगासन, ध्यान तथा व्यायाम आदि करने की सलाह दी । मि. अंगद ने अपने मित्र की सलाह मानकर जीवनयापन में परिवर्तन किया और कुछ ही दिनों में बेहतर महसूस करने लगे ।


उपरोक्त गद्यांश को पढ़कर निम्न के उत्तर दीजिए :

- (i) दीपक द्वारा किन मूल्यों (कम से कम दो) को दर्शाया गया है ?
- (ii) डॉक्टर की सलाह के बिना नींद की गोली क्यों नहीं लेनी चाहिए ?
- (iii) ट्रेंक्वीलाइजर क्या हैं ? दो उदाहरण दीजिए ।

Due to hectic and busy schedule, Mr. Angad made his life full of tensions and anxiety. He started taking sleeping pills to overcome the depression without consulting the doctor. Mr. Deepak, a close friend of Mr. Angad, advised him to stop taking sleeping pills and suggested to change his lifestyle by doing Yoga, meditation and some physical exercise. Mr. Angad followed his friend's advice and after few days he started feeling better.

After reading the above passage, answer the following:

- (i) What are the values (at least two) displayed by Mr. Deepak?
- (ii) Why is it not advisable to take sleeping pills without consulting doctor?
- (iii) What are tanquilizers? Give two examples.

- 24. (a) उस विलयन का हिमांक परिकलित कीजिए जिसके $50~{\rm g}$ जल में $1.9~{\rm g}~{\rm MgC}l_2~({\rm M}=95~{\rm g}~{\rm mol}^{-1})$ घुला है, यह मानकर कि ${\rm MgC}l_2$ पूर्णत: आयनीकृत है । (जल के लिए ${\rm K_f}=1.86~{\rm K}~{\rm kg}~{\rm mol}^{-1})$
 - (b) (i) 1 M ग्लूकोस और 2 M ग्लूकोस में से किसका क्वथनांक उच्चतर है और क्यों ?
 - (ii) क्या होता है जब विलयन के ऊपर लगाया गया बाह्य दाब परासरणी दाब से अधिक हो जाता है ?

अथवा

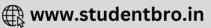
(a) जब $100~{\rm g~CS}_2$, में $2.56~{\rm g}$ सल्फर घुलाया जाता है, तो हिमांक $0.383~{\rm K}$ कम हो जाता है । सल्फर $({\rm S_x})$ के सूत्र को परिकलित कीजिए ।

 $(CS_2$ के लिए $K_f = 3.83 \text{ K kg mol}^{-1}$, सल्फर का प.सं. = 32 g mol $^{-1}$)

- (b) रक्त सेलें 0.9% सोडियम क्लोराइड विलयन के साथ आइसोटोनिक हैं । क्या होता है जब हम रक्त सेलों को एक विलयन में रखते हैं, जिनमें
 - (i) 1.2% सोडियम क्लोराइड का विलयन हो ?
 - (ii) 0.4% सोडियम क्लोराइड का विलयन हो ?
- (a) Calculate the freezing point of solution when 1.9 g of $MgCl_2(M=95 \text{ g mol}^{-1})$ was dissolved in 50 g of water, assuming $MgCl_2$ undergoes complete ionization.

 $(K_f \text{ for water} = 1.86 \text{ K kg mol}^{-1})$

- (b) (i) Out of 1 M glucose and 2 M glucose, which one has a higher boiling point and why?
 - (ii) What happens when the external pressure applied becomes more than the osmotic pressure of solution?


OR

(a) When 2.56 g of sulphur was dissolved in 100 g of CS_2 , the freezing point lowered by 0.383 K. Calculate the formula of sulphur (S_x) .

 $(K_f \text{ for } CS_2 = 3.83 \text{ K kg mol}^{-1}, \text{ Atomic mass of Sulphur} = 32 \text{ g mol}^{-1}]$

- (b) Blood cells are isotonic with 0.9% sodium chloride solution. What happens if we place blood cells in a solution containing
 - (i) 1.2% sodium chloride solution?
 - (ii) 0.4% sodium chloride solution?

56/1/2/D 9 [P.T.O.


- 25. (a) निम्न की कारण सहित व्याख्या कीजिए:
 - (i) ओजोन ऊष्मागतिकीय अस्थिर है ।
 - (ii) ठोस PCl_5 स्वभावत: आयनिक है ।
 - (iii) फ्लुओरीन केवल एक ऑक्सोएसिड HOF बनाती है ।
 - (b) (i) BrF_5 (ii) XeF_4 की संरचनायें आरेखित कीजिए ।

अथवा

- (i) F_2 और Cl_2 की उपचायकी क्रिया की तुलना निम्न संदर्भों में कीजिए : आबन्ध वियोजन एन्थैल्पी, इलेक्ट्रॉन प्राप्ति एन्थैल्पी और जल-अपघटन एन्थैल्पी ।
- ${
 m (ii)}$ संस्पर्श प्रक्रम द्वारा ${
 m H_2SO_4}$ के उत्पाद को अधिकतम बनाने के लिए शर्तें लिखिए ।
- (iii) वर्णित गुणधर्म के आरोही क्रम में निम्नलिखित को व्यवस्थित कीजिए :
 - (a) H₃PO₃, H₃PO₄, H₃PO₂ (अपचयन लक्षण)
 - (b) NH₃, PH₃, AsH₃, SbH₃, BiH₃ (क्षार प्रबलता)
- (a) Account for the following:
 - (i) Ozone is thermodynamically unstable.
 - (ii) Solid PCl_5 is ionic in nature.
 - (iii) Fluorine forms only one oxoacid HOF.
- (b) Draw the structure of
 - (i) BrF_5
 - (ii) XeF₄

OR

- (i) Compare the oxidizing action of F_2 and Cl_2 by considering parameters such as bond dissociation enthalpy, electron gain enthalpy and hydration enthalpy.
- (ii) Write the conditions to maximize the yield of H₂SO₄ by contact process.
- (iii) Arrange the following in the increasing order of property mentioned:
 - (a) H₃PO₃, H₃PO₄, H₃PO₂ (Reducing character)
 - (b) NH₃, PH₃, AsH₃, SbH₃, BiH₃ (Base strength)

26. (a) निम्न अभिक्रियाओं में A, B, C, D और E की संरचनाएँ लिखए:

$$C_{6}H_{6} \xrightarrow{CH_{3}COCl} Anhyd.AlCl_{3} \xrightarrow{A} A \xrightarrow{Zn-Hg/conc.HCl} B \xrightarrow{(i) KMnO_{4} - KOH, \Delta} C$$

$$\downarrow NaOI$$

$$D+F$$

अथवा

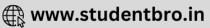
- (a) कैनिज़ारो अभिक्रिया में होने वाली अभिक्रिया के लिये रासायनिक समीकरण को दीजिए ।
- (b) एथैनैल के सेमीकार्बेज़ोन की संरचना आरेखित कीजिए ।
- (c) $Cl CH_2 COOH$ की अपेक्षा F-CH₂-COOH का pKa क्यों कम है ?
- (d) निम्न अभिक्रिया में उत्पाद को लिखिए:

$$CH_3 - CH = CH - CH_2CN$$
 (i) DIBAL-H (ii) H_2O

- (e) प्रोपैनेल और प्रोपैनोन के बीच अंतर कीजिए ।
- (a) Write the structures of A, B, C, D and E in the following reactions:

$$C_{6}H_{6} \xrightarrow{CH_{3}COCl} Anhyd.AlCl_{3} \xrightarrow{A} A \xrightarrow{Zn-Hg/conc.HCl} B \xrightarrow{(i) KMnO_{4} - KOH, \Delta} C$$

$$\downarrow NaOI$$


$$D + E$$

OR

- (a) Write the chemical equation for the reaction involved in Cannizzaro reaction.
- (b) Draw the structure of the semicarbazone of ethanal.
- (c) Why pKa of F-CH₂-COOH is lower than that of $Cl CH_2 COOH$?
- (d) Write the product in the following reaction:

$$\label{eq:ch3-CH} \begin{array}{ccc} \operatorname{CH_3-CH} = \operatorname{CH-CH_2CN} & \underbrace{ \begin{array}{ccc} \mathrm{(i)} & \mathrm{DIBAL-H} \\ \mathrm{(ii)} & \mathrm{H_2O} \end{array}} \end{array}$$

(e) How can you distinguish between propanal and propanone?

Chemistry Marking scheme Delhi - 2016 Set - 56/1/2/D

Q.No	VALUE POINTS	MARKS
1	2,4,6-Tribromoaniline / 2,4,6-Tribromobenzenamine	1
2	Like Charged particles cause repulsion/ Brownian motion/ solvation	1
3	CH ₃ CH ₂ CH(Cl)CH ₃ ; secondary halide/ 2 ⁰ carbocation is more	1/2, 1/2
	stable	
4	NH_3	1
5	Ferromagnetism	1
6	(i) zero order, bimolecular/unimolecular	1/2, 1/2
	(ii) mol L ⁻¹ s ⁻¹	1
7		
	(i) $CH_3-CH_2-\overset{\bullet}{O}-H + \overset{\bullet}{H}^+ \longrightarrow CH_3-CH_2-\overset{\bullet}{O}-H$	1/2
	(ii) $CH_3CH_2 = \overset{\circ}{O} : + CH_3 = \overset{\circ}{CH_2} = \overset{\circ}{O} : + CH_3 = \overset$	1
	(iii) $CH_3CH_2 \xrightarrow{\bullet} CH_2CH_3 \longrightarrow CH_3CH_2 \xrightarrow{\bullet} CH_2CH_3 + \overset{\bullet}{H}$	1/2
8	(i) Mercury cell	1/2
	(ii) Fuel cell	1/2
	(iii) Lead storage battery	1/2
	(iv)Dry cell	1/2
9	A-Na ₂ CrO ₄	1/2
	B-Na ₂ Cr ₂ O ₇	1/2
	C-K ₂ Cr ₂ O ₇	1/2
	Use- strong oxidising agent / as a primary standard in	1/2
	volumetric analysis	
	OR	
9	$8MnO_4^- + 3S_2O_3^{2-} + H_2O \longrightarrow 8MnO_2 + 6SO_4^{2-} + 2OH^-$	1
	$\text{Cr}_2\text{O}_7^{2-} + 14 \text{ H}^+ + 3 \text{ Sn}^{2+} \rightarrow 2 \text{ Cr}^{3+} + 3 \text{ Sn}^{4+} + 7 \text{ H}_2\text{O}$	1
		<u> </u>

Adsorption Surface phenomena The accumulation of molecular species at the surface rather than in the bulk of a solid or liquid is termed adsorption. Absorption Bulk phenomena The substance is uniformly distributed throughout the bulk of the solid essentially a bulk phenomenon. (any one difference)	10	 (i) [Cr(H₂O)₅Cl]Cl₂.H₂O (ii) pentaaquachloridoChromium(III) chloride monohydrate (or chloride hydrate) (no deduction for not writing hydrate) 			1
	11	(i)	Adsorption Surface phenomena The accumulation of molecular species at the surface rather than in the bulk of a solid or liquid is	Absorption Bulk phenomena The substance is uniformly distributed throughout the bulk of the solid essentially a bulk phenomenon.	1

	 (ii) AICl₃, more positive charge/Hardy-Schulze rule 	$\frac{1}{2} + \frac{1}{2}$
	(iii)Sulphur	1
12	(i) Zone refining	1
	(ii) Leaching / Bayer's process	1
	(iii) Reducing agent / to form CO which acts as a reducing	1
1.0	agent. (i) $E_{cell}^0 = E_c^0 - E_a^0$	
13		
	=(-0.44)-(-0.74) V	1/2
	=0.30V	72
	2 272	
	$E_{cell} = E^{0}_{cell} - \frac{0.059}{1000000000000000000000000000000000000$	1/2
	n [Fe ^q]	/2
	_	1
	$E_{cell} = E^{0}_{cell} - \frac{0.059}{6} \log \frac{[0.01]^{2}}{[0.1]^{3}}$	1
	$[0.1]^3$	
	= 0.30 - (-0.059/6)	1
•	=0.3098V	
14	(i) In chlorobenzene, each carbon atom is sp ² hybridised /	1
	resonating structures / partial double bond character.	
	(ii) Due to +R effect in chlorobenzene/ difference in	1
	hybridization i.e. sp ² and sp ³ respectively/ -I and +R effect	20
	oppose each other while —I effect is the only contributing	
	factor in cyclohexane.	
	(iii)Due to formation of planar carbocation/ Carbon in	1
	carbocation formed is sp ² hybridised.	
15	2×10^{24} atoms weigh = 300g	1
13	6.022×10^{23} atoms weigh = $(300 \times 6.022 \times 10^{23})/2 \times 10^{24}$	
	= 90.3 g	
	3 7 0.10 g	
	$d = z \times M$	
	a ³ N _A	$\frac{1}{2} + \frac{1}{2}$
	$=4x90.3/(250x10^{-10})xN_0$	
	$=38.4 \text{ gcm}^{-3}$	1
	(or any other correct method)	
16	$\log k = \log A - E_a/2.303RT$	1/2
	$E_a / 2.303 \text{ RT} = 1.0 \times 10^4 \text{ K/ T}$	
	$E_a = 1.0 \times 10^4 \times 2.303 \times 8.314$	
	=191471.4 J/mol	1
	^	1.7
	$t_{1/2} = 0.693 / k$	1/2
	k = 0.693/200 min	
	$= 0.0034 \text{min}^{-1}$	1
17	a. Catalyst / initiator of free radical	1
	b. Hexamethylene diamine and adipic acid / structure /	$\frac{1}{2}, \frac{1}{2}$
	IUPAC name	

	c. Buna-S <polystyrene<terylene< th=""><th>1</th></polystyrene<terylene<>	1
	OR	
17	$\begin{array}{c} Chain \ in it it at ion \ steps \\ \hline O & O \\ C_{\theta}H_{5} - C - O - C_{0} - C_{0}H_{5} & \longrightarrow 2C_{\theta}H_{5} - C - O & \longrightarrow 2\mathring{C}_{\theta}H_{5} \\ \hline Benzoyl \ peroxide & Phenyl \ radical \\ \hline \mathring{C}_{\theta}H_{5} + CH_{2} = CH_{2} & \longrightarrow C_{\theta}H_{5} - CH_{2} - \mathring{C}H_{2} \end{array}$	1
	Chain propagating step $C_{\phi}H_{5}-CH_{2}-\overset{\bullet}{C}H_{2}+CH_{2}=CH_{2}\longrightarrow C_{\phi}H_{5}-CH_{2}-CH_{2}-CH_{2}-\overset{\bullet}{C}H_{2}$ $C_{\phi}H_{5}+CH_{2}-CH_{2}-\overset{\bullet}{C}H_{2}-\overset{\bullet}{C}H_{2}$ $Chain \ terminating \ step$ For termination of the long chain, these free radicals can combine in different ways to form polythene. One mode of termination of chain is shown as under:	1
	$C_{6}H_{5} + CH_{2} - CH_{2} + \overset{\circ}{C}H_{2} - \overset{\circ}{C}H_{2}$ $C_{6}H_{5} + CH_{2} - \overset{\circ}{C}H_{2} + \overset{\circ}{C}H_{2} - \overset{\circ}{C}H_{2}$ $C_{6}H_{5} + CH_{2} - \overset{\circ}{C}H_{2} + \overset{\circ}{C}H_{2} - \overset{\circ}{C}H_{2}$ $C_{6}H_{5} + CH_{2} - \overset{\circ}{C}H_{2} + \overset{\circ}{C}H_{2} - \overset{\circ}{C}H_{2}$	1
18	 (i) β-D glucose and β-D-galactose / glucose and galactose (ii) water soluble ,excreted out of the body (iii)In nucleotide , phosphoric acid/phosphate group attached to 	1/2, 1/2
	the nucleoside / structures of both nucleotide and nucleoside / nucleotide= base +sugar + phosphate group, nucleoside= base +sugar.	1
19	d ² sp ³ , Paramagnetic, low spin	1, ½, ½
	cl Cl Cl en	1
20	 (i) ability of oxygen to form multiple bond/ pπ-dπ bond. (ii) Partially filled d orbitals / due to comparable energies of ns and (n-1) d orbitals (iii) due to relative stabilities of the f⁰, f⁷ and f¹⁴ occupancies of the 5f orbitals/ Comparable energies of 7s,6d,5f orbitals. 	1 1 1
21	(i) CH ₃ OH, (CH ₃) ₃ C-I (ii) CH ₃ CH ₂ CH ₂ OH	1 1 1
22	(i) C ₆ H ₅ NH ₂ , C ₆ H ₅ N ₂ ⁺ Cl ⁻ , C ₆ H ₅ I (ii) CH ₃ CN, CH ₃ CH ₂ NH ₂ , CH ₃ CH ₂ NC	$\frac{1/2 + 1/2 + 1/2}{1/2 + 1/2 + 1/2}$
23	(i)Aware, concerned or any other correct two values. (ii) Side effects, unknown health problems (iii) Neurologically active drugs/ stress relievers Example- valium, equanil (or any other correct two example)	$\frac{1/2 + 1/2}{1}$ $\frac{1}{1}$ $\frac{1}{1/2 + 1/2}$
24	a) $\Delta T_f = i \frac{K_f w_b \times 1000}{M_b \times w_a}$	1 1
	$\Delta T_f = 3 \times (1.86 \times 1.9/95 \times 50) \times 1000$ = 2.23K	1
	$T_f - \Delta T_{f'} = 273.15 - 2.23 / 273 - 2.23$	

	T	T
	$T_f = 270.92 \text{ K or } 270.77 \text{ K}$	1
	b) i)2M glucose; More Number of particles / less vapour pressure ii)Reverse Osmosis	1/2 + 1/2 1
	OR	
24		
	a) $\Delta T_f = \frac{K_f w_b \times 1000}{M_b \times w_a}$	1
	$0.383 = (3.83 \times 2.56/M \times 100) \times 1000$ M=256 $S \times x = 256$	1
	$32 \times x = 256$ $x=8$	1
	b) i)Shrinks ii)swells	1 1
25	a) i. Endothermic compound / decomposition of ozone is exothermic in nature and ΔG is negative / decomposition of ozone is	1
	spontaneous. ii. Exists as [PCl ₄] ⁺ [PCl ₆] ⁻ iii. Shows only -1 oxidation state / most electronegative element/ absence of d-orbitals	1
	b) i) ii) F F F F F F F F F F F F F F F	1,1
	OR	
25	 (i) F₂ is the stronger oxidising agent than chlorine (a) low enthalpy of dissociation of F-F bond (b) less negative electron gain enthalpy of F (c) high hydration enthalpy of F⁻ ion 	½ ×4=2
	 ii) low temperature, high pressure and presence of catalyst iii) a) H₃PO₄< H₃PO₃< H₃PO₂ b) BiH₃< SbH₃< AsH₃< PH₃< NH₃ 	1 1 1

26	A -C ₆ H ₅ COCH ₃	1
	B-C ₆ H ₅ CH ₂ CH ₃	1
	C-C ₆ H ₅ COOH	1
	D ,E -C ₆ H ₅ COONa , CHI ₃	1+1
	OR	
26	a)HCHO + HCHO conc NaOH HCOONa +CH3OH	1
	(or any other example)	
	b)CH ₃ CH=N-NHCONH ₂	1
	c) Stronger -I effect of fluorine ,stronger acid less pka / strong	1
	electron withdrawing power of fluorine.	
	d)CH ₃ CH=CHCH ₂ CHO	1
	e)Silver mirror formed on adding ammonical silver nitrate to	1
	propanal and not with propanone (or any other correct test)	

